Vertical first, horizontal second. How MLOps facilitates efficient vertical prototyping of Machine Learning systems.

DON 15:30 - 16:00

Zaal 6

Failure is inherent in doing data science. However, we have some options to reduce the blast radius of failure. Besides structuring the product development process appropriately, making the vertical breakthrough happen fast is key to detecting risks early and being able to iterate on the model development as close to a production setting and to the stakeholders as possible. Of course, developing vertical prototypes early can be expensive if your model development teams always need to take care of all the infrastructure, deployment and serving overhead. This is why the MLOps paradigm and, at its core, the establishment of a golden path — a set of processes, tools, templates and training — is crucial. It enables model development teams to push out vertical prototypes fast at very little additional costs by reducing the non-model specific overhead that comes with bringing ML systems (close) to production, eventually reducing the blast radius of failure in data science.

Wil jij deze en meer inspirerende lezingen volgen? Meld je gratis aan voor de Big Data Expo op 14 & 15 september 2022 in Jaarbeurs Utrecht.

  • Thema
    Data Science

    De impact van Data Science op onze business is enorm. Het ontsluiten van gestructureerde en ongestructureerde data door (zelf)lerende modellen vindt toepassing binnen allerlei bedrijven. Het oplossen van grote vraagstukken zoals: 'Hoe kan ik mijn klanten persoonlijker benadrukken met onze e-mailcampagnes?' of 'Kunnen we de hoeveleheid fraudegevallen bij aanvragen terugdringen?' gaat steeds sneller en effectiever door het gebruik van deze voorspellende toepassingen. Data Science helpt om continue waardevolle resultaten te behalen en te innoveren.